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Correlation functions of eigenvalues of multi-matrix
models, and the limit of a time-dependent matrix
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Durham DH1 3HP, UK

Received 27 January 1998, in final form 5 May 1998

Abstract. The universality of correlation functions of eigenvalues of large random matrices
has been observed in various physical systems, and proved in some particular cases, as the
Hermitian one-matrix model with polynomial potential. Here, we consider the more difficult case
of a unidimensional chain of Hermitian matrices with first-neighbour couplings and polynomial
potentials.

An asymptotic expression of the orthogonal polynomials and a generalization of the
Darboux–Christoffel theorem allow us to find new results for the correlations of eigenvalues
of different matrices of the chain.

Eventually, we consider the limit of the infinite chain of matrices, which can be interpreted as
a time-dependent Hermitian one-matrix model, and give the correlation functions of eigenvalues
at different times.

Random matrix theory (RMT) was introduced by Wigner [1] to describe statistically the
intricated structure of energy levels of heavy nuclei. More recently, the spectra of many
quantum systems (presenting chaos or disorder) in condensed matter physics have been
observed [2] to be well described by RMT. The properties of such quantum systems
are indeed modelled by the eigenvalues and eigenstates of some operators or matrices
(Hamiltonian, transfer matrix, scattering matrix), see [3, 4] for a review of RMT in quantum
physics.

The main reason RMT provides such a powerful tool to study quantum systems is
its universality. As the distribution of a large number of independent random variables
converges towards a Gaussian law (central limit theorem), the distribution of eigenvalues
of large random matrices seems to converge towards one of the three Gaussian laws (GOE,
GUE, GSE) depending on the symmetries of the matrices: orthogonal (time reversibility),
unitary (time reversibility broken) or symplectic (half-integer spin dependence).

For instance, it has been observed or proved for a wide number of models that the
two-point connected correlation function does not depend on the details of the system
[2, 5, 6] in the short-distance regime (of the order of the mean spacing), while the density
of levels is very dependent on the specific details of the system. In addition, it has been
observed [5, 7, 8], at least in the case of Hermitian matrices, that the correlation functions
should present some universality in the long-distance regime as well, once the short-distance
oscillations have been smoothed out.
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At least for Hermitian matrices, those conjectures [9] have been proved in a few special
cases, such as in the one-Hermitian-matrix model with polynomial potential [1, 5, 6, 10],
the one-Hermitian-matrix model in an external potential [11], and the two-Hermitian-matrix
model [12].

The analysis of [5, 12] was based on the method of orthogonal polynomials. The
correlation functions are expressed in terms ofkernels, depending on two variables, which
are sums of polynomials. Those results are exact and have been known for a long time
[13]. The problem was to derive an asymptotic expansion of the kernels in the largeN

limit (N is the size of the matrices), which is a hard task since the kernels involve the
sum ofN polynomials with degrees running from 0 toN − 1. In the one-matrix model
case [5], the Darboux–Christoffel theorem allowed one to rewrite the kernel with only
two polynomials of degreeN andN − 1. An ansatz for the asymptotic expression of the
orthogonal polynomials was then used to evaluate the universal correlation functions in the
short-range regime.

This ansatz was proved in [6, 12] and generalized to the two-matrix case, and it was
claimed in [12] that this method could probably be extended to a chain ofp random
Hermitian matricesM1, . . . ,Mp, where each matrixMk is coupled linearly to the following
oneMk+1.

In particular, when the number of matrices of the chain becomes infinite and the coupling
is chosen appropriately, this model can be viewed as a time-dependent random matrix. The
coupling between neighbouring matrices of the chain is then a kinetic term of the form
(dM/dt)2.

The aim of this paper is thus to generalize the analysis of [5, 12] to the chain of
Hermitian matrices. The paper is organized as follows. Section 1 concerns the discrete
chain and section 2 the continuous-time limit. In section 1, we first present the matrix
model, recall the orthogonal polynomial method, and then relate the correlation functions to
the orthogonal polynomials via the kernels and generalize the Darboux–Christoffel theorem
in order to rewrite these kernels as a sum of a finite number of terms. A WKB approximation
of the orthogonal polynomials allows one to find asymptotic expressions of the kernels, and
thus to find the correlation functions in the largeN limit. We then conclude by examining
the universal properties of these correlations and the possible generalization of the method.

1. The chain of matrices

Let us first present the model and introduce the notation coherent with that of [12].
Consider a linear chain ofp + 1 random HermitianN × N matricesMi (0 6 i 6 p),

with a probability law

P(Mi) = 1

Z

p∏
i=0

exp[−N trVi(Mi)]
p−1∏
i=0

exp[−Nc tr(Mi −Mi+1)
2] (1.1)

where theVi are polynomial potentials,c is the coupling constant between nearest
neighbours, andZ is the partition function. (In section 2, we will consider the continuum
limit of this model: the indexi will become a continuous variable, the timet = iε, and with
2c = 1/ε, the quadratic term

∑
i c tr(Mi−Mi+1)

2 will become a kinetic term
∫

1
2Ṁ

2(t) dt .)
The Harish–Chandra–Itzykson–Zuber formula [14] allows us to integrate out the angular

variables (the unitary group), and leaves us with the joint probability for the eigenvalues
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(let us noteλi;j (06 j 6 N − 1) thej th eigenvalue of the matrixMi):

ρ[λi;j ] = 1

Z
1(λ1)1(λp)

p∏
i=0

exp

[
−N

∑
j

Vi(λi;j )
] p−1∏
i=0

det
k,l
| exp[−Nc(λi;k − λi+1;l)2]|

(1.2)

where1 are the Vandermonde determinants:

1(λi) =
∏
k<l

(λi;k − λi;l).

We would now like to compute the conditional probabilities of some subsetI of these
N × (p+1) eigenvalues. We thus have to integrate (1.2) over all the eigenvalues which do
not belong toI . For instance, the density of the eigenvalues ofMi is

ρi(λi;1) =
∫
ρ[λ]

∏
(j,k)6=(i,1)

dλj ;k

the correlation function of two eigenvalues ofMi is

ρii(λi;1, λi;2) =
∫
ρ[λ]

∏
(j,k)6=(i,1),(i,2)

dλj ;k

and the correlation function of two eigenvalues of two matricesMi andMj is

ρij (λi;1, λj ;1) =
∫
ρ[λ]

∏
(l,k) 6=(i,1),(j,1)

dλl;k.

As in the one-matrix case [5, 12], all these densities and correlation functions can be
calculated by the orthogonal polynomials method [15]. Let us recall this method [4].

1.1. Orthogonal polynomials

Consider two families of polynomialsPn and P̃n, of degreen, beginning with the same
leading term, and which obey the orthogonality relation∫

dλ0 . . . dλp exp

[
−N

∑
i

Vi(λi)

]
exp

[
−Nc

∑
i

(λi − λi+1)
2

]
Pn(λ0)P̃m(λp) = δn,m.

(1.3)

Such polynomials always exist when theVi ’s are polynomials, except in some degenerate
cases. We then define the wavefunctionsψn and ψ̃n by

ψn(λ0) = Pn(λ0) exp[−N 1
2V0(λ0)]

ψ̃n(λp) = P̃n(λp) exp[−N 1
2Vp(λp)]

(note that the normalizations differ from [12]). With the help of the orthogonality relation
(1.3), we can define two families of Hilbert spacesEi, Ẽi , and the orthogonal functions in
each of them:

ψ0,n(λ0) = ψn(λ0)

ψi;n(λi) =
∫

dλ0 . . . dλi−1ψn(λ0) exp[−Nc((λ0− λ1)
2+ · · · + (λi−1− λi)2)]

× exp

[
−N

(
1

2
V0(λ0)+ V1(λ1)+ · · · + Vi−1(λi−1)+ 1

2
Vi(λi)

)]
(1.4)
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ψ̃p;n(λp) = ψ̃n(λp)
ψ̃i;n(λi) =

∫
dλi+1 . . . dλp ψ̃n(λp) exp[−Nc((λi − λi+1)

2+ · · · + (λp−1− λp)2)]

× exp

[
−N

(
1

2
Vi(λi)+ Vi+1(λi+1)+ · · · + Vp−1(λp−1)+ 1

2
Vp(λp)

)]
.

(1.5)

We shall denote them by the convenient Dirac notation:

〈n|i = ψi;n |n〉i = ψ̃i;n. (1.6)

In the spaceEi , we have the orthogonality relation∫
dλi ψi;n(λi)ψ̃i;m(λi) = 〈n|m〉i = δn,m.

In each of these spaces, we can define the usual operators (acting on the right-hand side,
the ket):
• λ̂i , the operator which multiplies̃ψi(λi) by λi ;
• P̂i = (1/N)∂/∂λi which differentiatesψ̃i with respect toλi .
These operators are defined only in the Hilbert spaceEi . However, all theEi are

isomorphic, and an operator̂O initially defined inEi can also be defined in anyEj by its
matrix elements:

〈n|Ô|m〉j def= 〈n|Ô|m〉i =
∫

dλi ψi;n(λi)Oψ̃i;m(λi).

Henceforth, we will drop the indexi for the bras and kets.

1.2. Equations of motion

From the former definitions we immediately obtain the equations of motion:

P̂i = 2c(λ̂i+1− λ̂i)− 1
2V
′
i (λ̂i) (1.7)

P̂0 = 2c(λ̂1− λ̂0)− 1
2V
′

0(λ̂0) P̂p = 2c(λ̂p − λ̂p−1)+ 1
2V
′
p(λ̂p) (1.8)

and with an integration by parts

λ̂i−1+ λ̂i+1− 2λ̂i = 1

2c
V ′i (λ̂i). (1.9)

Let us now introduce a more convenient notation. Since we began with polynomialsPn
andP̃n, we know how the multiplications or derivations byλ0 or λp will act: multiplication
by λp raises the degree of̃Pn by 1, andλpP̃n(λp) can be decomposed onto the base of the
P̃n−k with k > −1:

λpP̃n(λp) = α(n)P̃n+1(λp)+
∑
k>0

α̃k(n)P̃n−k(λp)

(where α(n) is the ratio of the leading coefficients of̃Pn and P̃n+1, and theα̃k(n) are
coefficients to be determined later).

Let us write this in operatorial notation. For this purpose, we introduce the shift operator
x̂, which decreases the level (annihilation operator), and the level operatorn̂:

x̂|n〉 = |n− 1〉 〈n|x̂ = 〈n+ 1| n̂|n〉 = n|n〉.
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Although x̂ is not invertible, we shall abusively writêx† = 1/x̂, for it will make no
difference when we go to the largeN limit, and it will considerably simplify the notation†.

We can then write

λ̂
†
0 =

1

x̂
α(n̂)+

∑
k>0

x̂kαk(n̂) λ̂p = 1

x̂
α(n̂)+

∑
k>0

x̂kα̃k(n̂). (1.10)

Remember that̂λ0 acts on the ket|n〉, i.e. on the polynomialP̃n, its adjoint acts on the bra
Pn. Note also that the first term,α(n), is the same for bothλ0 and λp because we have
chosen the polynomialsPn and P̃n with the same leading coefficient.

Similarly, noting that the operator̂P = (1/N)d/dλp decreases the degree of the
polynomial P̃n(λp) by 1,

d

dλp
P̃n(λp) = 1

α(n− 1)
nP̃n−1+ · · ·

we can express the operatorsP̂0 and P̂p in power series of̂x:

P̂
†
0 +

1

2
V ′0(λ̂

†
0) =

1

α(n̂)
x̂
n̂

N
+O(x̂2) (1.11)

P̂p + 1

2
V ′p(λ̂p) =

1

α(n̂)
x̂
n̂

N
+O(x̂2). (1.12)

We might as well write any of the operatorsλ̂i with such a notation,

λ̂i =
∑
k

αi;k(n̂)x̂k

but let us first go to the largeN limit.

1.3. Large N limit

In the classical limitN →∞, all these operators become numbers. Indeed, the commutators
[P̂ , λ̂] = 1/N and [x̂, n̂/N ] = x̂/N are proportional to 1/N which thus plays the role of
h̄‡. We then write

λi(x) =
∑
k

αi,kx
k with −

p∏
j=i+1

degV ′j 6 k 6
i−1∏
j=0

degV ′j . (1.13)

The bounds onk are easily derived from the equations of motion and boundary conditions.
We also consider the limit wheren is large and close toN , so that to leading order theαi,k
no longer depend onn, rather they are just coefficients.

In addition, there exists a remarkable relation (the proof from the canonical commutation
relations is not difficult but of no interest for what follows):

1= c
∑
k

k(αi+1,k − αi−1,k)αi,−k 06 i 6 N. (1.14)

† We havex̂|0〉 = 0, and x̂ is not invertible only on one state|0〉. This will have no consequence because all
the physics takes place at the ‘Fermi level’|N〉. One way to give a rigorous meaning tox̂−1 could be to define
negative states|−1〉, provided that all theαk(−1) vanish, which is true.
‡ Actually, this is true only if the support of the density is connected, i.e. we assume we have a one-cut solution;
for a k-cut solution, we would need to consider the operators ask × k matrices. For example, for a symmetric
double well, one needs to distinguish between even and odd values ofn, which introduces two sets of coefficients
αk(2n) andαk(2n+ 1).
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Let us rewrite in the classical limit the equations of motion (1.9) and the boundary conditions
(1.11) and (1.12) previously written for operators. We have the following system of
equations:

λi−1+ λi+1− 2λi = 1

2c
V ′i (λi) 16 i 6 p − 1 (1.15)

with the boundary conditions

V ′0(λ0)− 2c(λ1− λ0) = 1

αx
+O(1/x2) (1.16)

V ′p(λp)− 2c(λp−1− λp) = x

α
+O(x2). (1.17)

One can verify that we have exactly as many equations as unknowns. If we were able to
solve this system of algebraic equations and determine all theαi,k, we could definep + 1
functionsλi(x), of an auxiliary variablex. We will see later the important role they play.

1.4. WKB approximation

One can find (by a simple generalization of [12], i.e. by performing a kind of saddle-
point method for matrix integrals on the explicit expressions given in appendix B) some
asymptotic expressions of theψi;n in the limit N large and|n−N | ∼ O(1):

ψ0;n(λ0) ∼
∑

x/λ0(x)=λ0

(
π

Nc

)−p/4 1√
2π

1

λ′0(x)
xn−N exp

[
− 2Nc

∫ x

(λ1− λ0)λ
′
0

]
× exp

[
N

2
V0(λ0)

]
ψi;n(λi) ∼

∑
x

(
π

Nc

)i/2−p/4 1√
2π

1√
λ′i (x)

xn−N exp

[
−Nc

∫ x

(λi+1− λi−1)λ
′
i

]
ψp;n(λp) ∼

∑
x

(
π

Nc

)p/4 1√
2π

1√
λ′p(x)

xn−N exp

[
− 2Nc

∫ x

(λp − λp−1)λ
′
p

]

× exp

[
− N

2
Vp(λp)

]
ψ̃0;n(λ0) ∼

∑
x

(
π

Nc

)p/4 1√
2π

1√−λ′0(x)xN−n−1 exp

[
2Nc

∫ x

(λ1− λ0)λ
′
0

]
× exp

[
− N

2
V0(λ0)

]
ψ̃i;n(λi) ∼

∑
x

(
π

Nc

)p/4−i/2 1√
2π

1√−λ′i (x)xN−n−1 exp

[
Nc

∫ x

(λi+1− λi−1)λ
′
i

]
ψ̃p;n(λp) ∼

∑
x

(
π

Nc

)−p/4 1√
2π

1√
−λ′p(x)

xN−n−1 exp

[
2Nc

∫ x

(λp − λp−1)λ
′
p

]

× exp

[
N

2
Vp(λp)

]
.

(1.18)

We shall not prove those asymptotic expressions, but just give some intuitive explanations.
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• First, observe that to leading order they all have the form

ψi ∼ exp

[
−N

∫ λi

Pi dλi

]
and ψ̃i ∼ exp

[
N

∫ λi

Pi dλi

]
which is simply the solution of the differential equation̂Pi |n〉 = (1/N)(d|n〉/dλi) in the
large N limit. The lower bound of the integral, which has not been written here for
simplicity, depends oni; it is determined by the condition that

∫ λi V ′i (µi) dµi = Vi(λi).
• The xn−N term comes from the definition of̂x:

〈N |x̂n−N = 〈n|.
• Moreover, observe that the approximation forψi+1 can be derived fromψi by steepest

descent in (1.4), and the expressions for theψ̃ ’s can be derived from theψ ’s by x → 1/x
and i → p − i.
• Finally, the normalization constants and 1/

√
2πλ′i (x) are just what is needed to satisfy

the normalization condition

〈n|m〉 = δnm.
Note that this is nothing else than the WKB approximation.

Remember that, in quantum mechanics, the wavefunction of a particle outside a potential
well decreases exponentially, while inside the well it is a stationary wave, i.e. a superposition
of two opposite progressing waves. This is also what we have here.
• The sum overx means that you have to consider the values ofx, solutions of

λi(x) = λi which have this property. Whenλi belongs to [ai, bi ] (the support of the
density of eigenvalues of theith matrix), the equationλi(x) = λi has no real solution, it
has only pairs of complex conjugate solutions, which give the stationary wave. The sum of
the two complex solutions will give rise to some real expression forψi;n, involving cosine
and sine functions instead of exponentials (cf [5, 12]). Whenλi is outside [ai, bi ], you have
to keep only the solution which decreases exponentially at infinity.

Henceforth, we will consider only the first case, i.e.λi ∈ [ai, bi ].

1.5. Kernels

Remember that we have introduced the orthogonal polynomials in order to integrate the
joint density (1.2) over a subsetI of theN × (p + 1) variables [4, 16]. For this purpose,
let us as usual [4] rewrite the Vandermonde determinants:

1(λ0) =
∏
k<l

(λ0;k − λ0;l) = det
k,l
|(λ0;l)k−1|.

Since linear combinations of columns preserve the determinant, we can rewrite

1(λ0) = cte det
k,l
|Pk−1(λ0;l)|

1(λp) = cte det
k,l
|P̃k−1(λp;l)|.

The cte is a normalization which comes from the fact that the polynomialsPk and P̃k are
not monic (in fact, cte= ∏N−1

n=0 α(n)
N−1−n). Any partial integration of (1.2) can thus be

written as an integral over theψi;n and ψ̃j ;m. Since they are orthogonal, the integration is
easily performed, and the final result can be written in terms of 2(p + 1)2 kernels defined
by

Ki,j (λi, λj ) = 1

N

N−1∑
n=0

ψi;n(λi)ψ̃j ;n(λj ) (1.19)
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and

Ei,j (λi, λj )=



0 if i > j

exp

{
−N

2
[2c(λi − λi+1)

2+Vi(λi)+Vi+1(λi+1)]

}
if i = j − 1∫ j−1∏

l=i+1

dλl
j−1∏
l=i
El,l+1(λl, λl+1) if i < j − 1.

(1.20)

In the p = 1 case discussed in [12] there were only four kernels (theKij ); indeed, the
Eij which were just numbers were absorbed into the normalizations. However, in the
general case, theEij contain integrations and cannot be absorbed. Note that theEij are the
propagators fromψi to ψj (i < j ):∫

dλj ψ̃j ;n(λj )Ei,j (λi, λj ) = ψ̃i;n(λi)∫
dλi ψi;n(λj )Ei,j (λi, λj ) = ψj ;n(λj ).

We thus have the following projection relations:∫
dλj EijEjl = Eil if i < j < l∫
dλj EijKlj = Kli if i < j∫
dλi EijKil = Kjl if i < j∫
dλj KijKjl = 1

N
Kil.

(1.21)

1.6. Correlation functions

In terms of these kernels, the joint density (1.2) of all the eigenvalues of all the matrices
can be rewritten:

ρ = cte detK0,p detE0,1 detE1,2 . . .detEp−1,p.

To obtain the densities and correlation functions of some set of eigenvalues, we have to
partially integrateρ with respect to the other eigenvalues, and this can be done [15] with
the help of the projection rules (1.21). The general result is given in appendix A. Here, we
will only consider the one- and two-point functions.

The density of eigenvalues (the one-point function) of theith matrix is

ρi(λi) = Ki,i(λi, λi) (1.22)

and the two-point connected correlation function of one eigenvalueλi of the ith matrix and
one eigenvalueµj of the j th matrix is

ρ
(c)
i,j (λi, µj ) = −Ki,j (λi, µj )Kj,i(µj , λi)+

1

N
Ki,j (λi, µj )Ei,j (λi, µj ) (i 6 j). (1.23)

We now have to evaluate the kernelsKij andEij in the largeN limit. The first step
will be a generalization of the Darboux–Christoffel theorem, which allows one to rewrite
Kij as a sum of a small number of terms, instead of the sum ofN terms as in (1.19). The
second step will be to use the WKB approximations (1.18) for theψ ’s. The propagators
Eij will be evaluated by steepest descent.
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1.7. Generalization of the Darboux–Christoffel theorem for the kernels

As in [12] the Darboux–Christoffel theorem can be generalized. Formally, we write that

ψi;n(λ0) = x̂−(N−n)ψi;N(λ0) ψ̃j ;n(λp) = x̂N−nψ̃j ;N(λp) (1.24)

and we sum up the geometrical series in (1.19):

Ki,j (λi, λj ) = 1

N

ŷ

x̂ − ŷ ψi;N(λi(x))ψ̃j ;N(λj (y))) (1.25)

(we have calledŷ the operatorx̂ acting on the second variable). Multiplying both sides
of (1.25) by (λi(x̂) − λi(ŷ)) would give on the left-hand side a differential polynomial
acting onKij (indeedλi(ŷ) can be rewritten as a polynomial in̂λj and P̂j with the help of
equations (1.7) and (1.9)), and on the right-hand side a polynomial inx̂ and ŷ, i.e. a small
number ofψi;n and ψ̃j ;n with |n− N | � N (an explicit example is given in appendix C).
However, we will not do this, but use (1.25) directly in the largeN limit, where x̂ and ŷ
become numbersx andy.

The kernels can thus be approximated by

Ki,j (λi, λj ) ∼ 1

N

y

x − yψi;N(λi(x))ψ̃j ;N(λj (y))

and using the WKB asymptotic expressions (1.18) ofψi;N and ψ̃j ;N

Ki,j ∼
∑
xy

(
π

Nc

)(i−j)/2 1

2iπN

1

x − y
1√

λ′i (x)λ
′
j (y)

× exp

[
−Nc

(∫ x

(λi+1− λi−1)λ
′
i −

∫ y

(λj+1− λj−1)λ
′
j

)]
(1.26)

wherex andy appear in complex conjugate pairs, solutions ofλi(x) = λi andλj (y) = λj .
One can also find an asymptotic expression for the kernelEij by steepest descent:

Eij ∼
(
π

Nc

)(j−i−1)/2 1√
Dij (x, y)

exp[−NcUij (λi, λj )] (1.27)

where

Uij (λ, µ) =
j−1∑
l=i

(
(λl − λl+1)

2+ 1

2c
Vl(λl)+ 1

2c
Vl+1(λl+1)

)
.

λl(λ, µ) are determined by the saddle-point equation

λi = λ λj = µ 2λl + 1

2c
V ′l (λl) = λl−1+ λl+1 for i < l < j

andDij is the determinant of the matrix of the second derivatives ofUij with respect to the
λl ’s:

Dij = det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2+ V
′′
i+1(λi+1)

2c
−1 0 . . . 0 0

−1 2+ V
′′
i+2(λi+2)

2c
−1 0 . . . 0

0
. . .

. . .
. . .

...
... 0 −1 2+ V

′′
j−2(λj−2)

2c
−1

0 0 . . . 0 −1 2+ V
′′
j−1(λj−1)

2c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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In the particular casex = y we have

Uij (x, x) = −
∫ x

(λi+1− λi−1)λ
′
i +

∫ x

(λj+1− λj−1)λ
′
j

and

Dij (x, x) =
j−1∑
l=i

λ′i (x)λ
′
j (x)

λ′l(x)λ
′
l+1(x)

.

Substituting (1.26) and (1.27) into (1.22) and (1.23) we can now evaluate the correlation
functions.

1.8. Correlation functions in the short-distance limit

Casei = j
Settingi = j in (1.26) gives

Ki,i(λ, µ) ∼
∑
xy

1

2iπN

1

x − y
1√

λ′i (x)λ
′
i (y)

exp

[
−Nc

∫ x

y

(λi+1− λi−1)λ
′
i

]
wherex andy are the complex solutions ofλi(x) = λ andλi(y) = µ. Whenλ is close to
µ, to leading order, we keep only the values ofx and y such that|x − y| is small. This
then reduces to

Ki,i(λ, µ) ∼ − 1

πN

1

λ− µ sin{Nc(λ− µ)Im (λi+1− λi−1)}
× exp[−Nc(λ− µ)Re(λi+1− λi−1)].

In particular, whenλ = µ we obtain the density

ρi(λ) = Ki,i(λ, λ) = − c
π

Im (λi+1(x)− λi−1(x)) = − 1

π
ImPi(x). (1.28)

Whenλ is close toµ but different, we can compute the two-point connected correlation
function

ρ
(c)
i,i (λ, µ) = −Ki,i(λ, µ)Ki,i(µ, λ)

i.e.

ρ
(c)
i,i (λ, µ) ∼

λ→µ
−
(

sinNπ(λ− µ)ρi(λ)
Nπ(λ− µ)

)2

(1.29)

and we recover the universal two-point correlation function in the short-distance regime.

Casei 6= j
It is now meaningless to consider the limitλi close toλj since they are eigenvalues of
different matrices. Generically,Kij is of order 1/N , which means that the connected
correlation function is of order 1/N2, and we can say that in the largeN limit λi andλj
are uncorrelated.

The only limit in which the correlation may become larger than 1/N2 is the case where
x − y becomes small. The equationx = y defines a functionλi(λj ). The problem is that
this function takes complex values in the interesting domain—for example, we see from
equation (1.28) thatλi+1(λi) or λi−1(λi) take complex values (this fact has already been
debated in [12])—and we have not found any physical interpretation, except in the case of
the continuous model described in the next section.
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However, let us assume that|x−y| is small (we will also assumei < j ). We introduce
the scaling variable

1 =
√
N(x − y)

√
λ′iλ
′
j

√
c

Dij

.

In the limit |x − y| → 0, the Taylor expansion of the term appearing in the exponential in
(1.26) gives∫ x

(λi+1− λi−1)λ
′
i −

∫ y

(λj+1− λj−1)λ
′
j = −Uij +

λ′iλ
′
j

Dij

(x − y)2+O((x − y)3).

Therefore, we have

Kij ∼
( π
Nc

)(i−j)/2 1

2iπ
√
N

√
c

Dij

e+NcUij
1

1
e−1

2

Kji ∼
( π
Nc

)(j−i)/2 1

2iπ
√
N

√
c

Dij

e−NcUij
1

1
e1

2
(1.30)

1

N
Eij ∼

( π
Nc

)(j−i)/2 1√
π
√
N

√
c

Dij

e−NcUij .

Remember that each of these expressions is actually a sum over the different values ofx

andy satisfyingλi(x) = λ andλj (y) = µ. However, sinceλ andµ are not assumed real,
the different values ofx or y contributing to this sum are not the complex conjugates of
each other, and the exponential term cannot simply be replaced by a sine function.

However, we have the correlation function

ρ
(c)
i,j
∼
1→0

∑
xy

− 1

4π2N

c

Dij

1

1
eNcUij

∑
xy

(
1

1
− 2
√
π e−1

2

)
e−NcUij . (1.31)

To go further one would have to make some assumption on the argument ofx and y
(i.e. where in the complex plane areλ andµ), and then separate the imaginary and real parts
of Uij and1. We would then observe that in this scaling regime (|x − y| ∼ 1/

√
N ), ρ(c)i,j

is of order O(1/N) instead of O(1/N2), and that it presents some kind of universality: it
does not depend very explicitly on the potentialsVi(λ). The signification of this correlation
function is therefore not clear, and has to be further studied. However, this calculation
was performed to prepare for the next section, the continuous chain of matrices, where it is
possible to have bothλ andµ real and(x − y) small, becauseDij will be small too.

1.9. Smoothed functions

It has been argued that once the short-distance oscillations of the correlation functions have
been smoothed out, they should present some universality properties, i.e. they do not depend
on the potentialsVi (cf [8] for the one-matrix model).

Indeed, when we smooth expression (1.23) (we keep only the terms which do not
oscillate at frequencyN in the sums overx and y, i.e. those for which the exponentials
exactly cancel), we obtain

ρ
(c)
i,j (λi, λj )smooth∼ − 1

4π2N2

x ′(λi)y ′(λj )
(x(λi)− y(λj ))2 + complex conjugate. (1.32)

This result is exactly the same as for two matrices [7, 12, 17] and recalls the universal result
of [8].
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2. Continuum limit

The model of a chain of matrices is naturally extended to the model of a time-dependent
random matrix. We replace the integer indexi by a continuous timet = iε, which runs
from 0 to T = pε. The coupling termc(Mi −Mi+1)

2 becomes a kinetic term and we set

c = 1

2ε

∑
i

−→ 1

ε

∫
dt Vi(λ) −→ εV (λ, t).

The partition function thus becomes a functional integral for a one-dimensional matrix field:

Z =
∫
D[M(t)] exp

[
−N tr

∫ T

0
dt

(
1

2

(
dM

dt

)2

+ V (M(t), t)
)]
.

Time-dependent or parameter-dependent random matrices represent out of equilibrium or
more realistic physical systems, and have been much studied [18, 19]. The usual observables
are the correlations of velocities, and the curvatures (second derivatives with respect to time),
which can probably be derived in the context of the results presented here but which we
shall consider now, are just the limits of the results of section 1, i.e. the two-point correlation
functions.

We now have a set of orthogonal wavefunctions depending on time

ψi;n(λ) −→ ψn(λ, t) and ψ̃i;n(λ) −→ ψ̃n(λ, t)

which satisfy the orthogonality relationship∫
dλψn(λ, t)ψ̃m(λ, t) = δn,m.

In fact, one has to change the normalization, just to absorb the constant factor(π/Nc)i/2

of equation (1.18) which becomes infinite in the continuum limit. However, this does not
change anything else.

2.1. The functionλ(x,t)

We can define a family of functionsλ(x, t) of an auxiliary variablex:

λi(x) −→ λ(x, t) =
∑
k

αk(t)x
k. (2.1)

Note that according to equation (1.13),k runs from−∞ to +∞ (except for the Gaussian
case), so that (2.1) has to be taken as a formal expansion in the Laurent series.

λ(x, t) obeys the continuous limit of the equations of motion (1.15)

λ̈ = ∂2

∂t2
λ(x, t) = V ′(λ(x, t)) (2.2)

with the boundary conditions (1.16)

λ(x, 0) = αx +
∑
k60

αk(0)x
−k λ̇(x, 0) = − 1

xα
+O(1/x2)

λ(x, T ) = 1

x
α +

∑
k>0

xkαk(T ) λ̇(x, T ) = x

α
+O(x2).

(2.3)
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These last conditions can be rewritten in a way which does not involve any expansion in
powers ofx†:

λ̇(x, 0) ∼ − 1

λ(x, 0)
whenλ(x, 0)→∞

λ̇(x, T ) ∼ 1

λ(x, T )
whenλ(x, T )→∞.

However, to define the functionx(λ, t) you cannot avoid performing the formal expansion.

Remark.Equation (1.14) becomes
∑

k kα̇kα−k = 1.

2.2. The momenta

The momentumP(x, t) is the time derivative ofλ(x, t) (equations (1.7) and (1.8)):

P(t) = λ̇ = ∂λ

∂t

∣∣∣∣
x

= v(λ, t)− iπρ(λ, t).

Its imaginary partρ(λ, t) = (−1/π)ImP(t) is the density of eigenvalues at timet .

2.3. The kernels

The discrete kernelsKij andEij naturally have some continuous version:

Ki,j (λ, µ) −→ K(λ, t |µ, t ′) = 1

N

N−1∑
n=0

ψn(λ, t)ψ̃n(µ, t
′)

Ei,j (λ, µ) −→ E(λ, t |µ, t ′) =
∫ λ(t ′)=µ

λ(t)=λ
D[λ(τ)] exp

[
−N

∫ t ′

t

dτ

(
1

2
λ̇2+ V (λ(τ), τ )

)]
.

E is the usual quantum mechanics propagator for a single particle in the potentialV :

ψn(λ, t
′) =

∫
dµψn(µ, t)E(µ, t |λ, t ′)

and these kernels allow us to calculate the two-point connected correlation function (t < t ′):

ρ(c)(λ, t |µ, t ′) = −K(λ, t |µ, t ′)
(
K(µ, t ′|λ, t)− 1

N
E(λ, t |µ, t ′)

)
.

2.4. Correlations

Let us calculate the two-point correlation in the limit whereδλ = λ−µ andδt = t − t ′ are
small, of order 1/N . In this purpose, we have to evaluate the kernelK(λ, t |λ+ δλ, t + δt)
with the WKB approximation (1.26) (remember that we have absorbed the (π/Nc) factors):

K ∼ 2Re
1

2iπN

1√
λ′λ′
−1

δx
exp

[
−N

(∫ λ

P (λ′, t)dλ′ −
∫ λ+δλ

P (λ′, t + δt) dλ′
)]

† Even in the discrete case,ω0(λ0(x)) = 2c(λ0(x) − λ1(x)) + V ′0(λ0(x)) is the resolvent of the first matrix
ω0(λ) = (1/N)〈Tr(1/(λ−M0))〉, andωp(λp(x)) = 2c(λp(x)− λp−1(x))+ V ′p(λp(x)) is the resolvent of thepth

matrix. The resolvent behaves asω(λ) ∼ 1/λ at largeλ. In the continuum limit, we haveω(λ(x, 0), 0) = −λ̇(x, 0)
andω(λ(x, T ), T ) = λ̇(x, T ). For the intermediate values ofi (intermediate times), there is no simple relationship
between the resolventωi(λ) (ω(λ, t)) and the functionsλi(x) (λ(x, t)).
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whereP(λ, t) = λ̇ = (∂λ/∂t)|x = v − iπρ. Writing δλ = λ′δx + Pδt , the denominator
λ′δx is δλ− vδt + iπρδt , and the term in the exponential isPδλ+ δt ∫ λ(∂P/∂t)|λ which
is evaluated through a play with the partial derivatives atλ fixed or x fixed:

V ′(λ) = λ̈ = ∂P

∂t

∣∣∣∣
x

= ∂P

∂t

∣∣∣∣
λ

+ ∂P
∂λ

∣∣∣∣
t

∂λ

∂t

∣∣∣∣
x

.

We thus obtain

K ∼ Im
1

Nπ(vδt − δλ− iπρδt)
exp[N iπρ(vδt − δλ)]

× exp

[
N

(
vδλ+ δt

(
V − 1

2
v2+ 1

2
π2ρ2

))]
. (2.4)

Similarly, observing that the continuous limit ofDij is

1

c
Dij ∼ 2δt

the asymptotic expression (1.27) forE turns into

1

N
E ∼ 1√

2πNδt
exp

[
−N

(
1

2

δλ2

δt
+ V δt

)]
for δt > 0. (2.5)

• Equal time correlations. Whenδt = 0 we recover the usual one-matrix model result:

K ∼ sin(Nπρδλ)

Nπδλ
eNvδλ.

For instance, whenδλ = 0 we obtain the one-point function (the density)K = ρ. When
δλ 6= 0 but of order 1/N , we have the universal correlation function:

ρ(c)(λ, t |λ+ δλ, t) ∼ −ρ2

(
sin(Nπρ δλ)

Nπρδλ

)2

.

Therefore, at equal times, the correlation function of close eigenvalues is still universal.
• Different times. Whenδt 6= 0, the denominator ofK never vanishes. It reaches its

minimum for δλ = vδt . We shall thus consider the regime

δλ = vδt and δt ∼ 1/N

where we have

K ∼ ρ

Nπ2ρ2δt
exp

[
Nδt

(
V + 1

2
v2+ 1

2
π2ρ2

)]
and

1

N
E ∼ ρ

√
π√

2Nπ2ρ2δt
exp

[
−Nδt

(
V + 1

2
v2

)]
.

Thus

ρ(c)(λ, t |λ+ vδt, t + δt) ∼ −ρ2 1

1

(
1

1
+
√
π

2

e
1
21√
1

)
with 1 = Nπ2ρ2δt (2.6)

which is remarkably universal; it does not depend on the precise form of the potential
V (λ, t).
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3. Conclusions

We have thus, as announced in [12], generalized the properties of the correlation functions
of the two-matrix model to the chain of matrices.

As expected, the chain of matrices obeys the same universal properties as the one- and
two-matrix models. We obtain similar results.
• The correlation function is generically of order 1/N2, except in the regime where the

denominator of the kernelK becomes small. This may happen only at a small distanceδλ

and at a small time intervalδt .
• At equal time (δt = 0) we recover exactly the well known universal correlation

function of the one-matrix model. This is therefore one more matrix model where this
universality is proved.
• At different times (δt > 0), the two-point connected correlation function is again a uni-

versal function ofδt and the covariant intervalδλ−vδt , i.e. it does not depend on the poten-
tial V (λ, t) (indeed the term involvingV exactly cancels when multiplying (2.4) and (2.5)).

Moreover, we have given a very explicit way to compute the correlation functions.
This method (the generalized Darboux–Christoffel theorem) might allow one to compute
the correlation functions even forN finite, provided one knows the orthogonal polynomials,
although what we have computed here is an approximation in the largeN limit, using the
WKB approximations of the orthogonal polynomials.

This method has shown that the functionx(λ) plays a very important role; as the best
auxiliary variable, its physical meaning should be better understood, beyond the orthogonal
polynomial’s method. For instance, another way of solving the chain of matrices is through
the loop equations (the invariance of the partition function with respect to the change
of variables, see appendix D). The loop equations exist even for models which have no
orthogonal polynomial methods, and enable one to compute the subleading terms in the
1/N expansion. These equations (in the largeN limit) can be written (appendix D) as an
algebraic equation (of very high degree) for the resolvent of the first (or last) matrix of
the chain. The parametrization ofλ and ω(λ) as functions ofx allows us to solve this
algebraic equation, or at least to reduce drastically its degree. This is an indication that the
function x(λ) is a very good variable to deal with the loop equations, and maybe thatx(λ)

could be defined out of the orthogonal polynomial’s frame. All this is reminiscent of the
diagrammatic method of [8] to derive the two-point correlation function.

We have not considered here the smoothedk-point connected correlation functions with
k > 2, in the long-distance regime, for which [7, 8, 12] claim some universality properties.
The reason is that the orthogonal polynomials method fails in this case. Indeed, thek-point
connected correlation function is a product ofk kernels, and thus is of orderN−k, while
it is well known from quantum gravity that the smoothed part is of orderN2−2k (it can be
understood topologically [7, 12]: the exponent ofN is the Euler characteristic ofk disks for
the leading disconnected term, and of a sphere withk holes for the connected part). In the
one-matrix case [7], the smoothedk-point correlation functions (withk > 2) are derived by
the loop equations or equivalently by diagrammatic methods [8].

We have considered here only the Hermitian matrix case, although orthogonal
polynomial methods are also available in the orthogonal and symplectic cases, with some
refinements such as the introduction of pfaffians. It is thus likely that some of the
results presented here can have consequences for the non-Hermitian models (the WKB
approximations and the generalized Darboux–Christoffel theorem). The problem is that
the Itzykson–Zuber formula cannot be generalized, and the whole model of the chain of
matrices requires a completely different approach.
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Another generalization one might think about would be a closed chain with, for instance,
periodic boundary conditions (Mp = M0), but for the same reason (the Itzykson–Zuber
formula), the orthogonal polynomial method does not hold.

The main prospect should now be to study the correlations of velocities and curvatures.
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Appendix A. Correction functions of any set of eigenvalues

The general correlation function of any set of eigenvalues has been computed in [15] (see
also [13] for the one-matrix case).

In addition to the kernelsKij andEij , we will need to introduce theHij ’s:

Hij = Kij − 1

N
Eji if j 6 i Hij = Kij if j > i.

To compute a partial density of eigenvalues, for instance

ρn0,...,np (λ0;1, . . . , λ0;n0, . . . , λp;1, . . . , λp;np )
you have to consider all the possible permutations of all then = n0 + · · · + np variables,
and then (with obvious notations)

ρ(λ1, . . . , λn) = det
i,j
Hi,j =

∑
σ

(−1)σ
∏
i

Hi,σ (i)(λi, λσ(i)).

The connected correlations are obtained by reducing the sum to the cyclic permutations
only.

For instance, we have (we assumei 6 j 6 k)

ρi(λi) = Ki,i(λi, λi)
ρ
(c)
i,j (λi, λj ) = −Ki,j (λi, λj )Kj,i(λj , λi)+

1

N
Ki,j (λi, λj )Ei,j (λi, λj )

ρ
(c)
i,j,k = KijKjkKki +KikKkjKji −

1

N
(KijKjkEik +KjiKikEjk +KikKkjEij )

+ 1

N2
KikEijEjk.

Appendix B. Explicit expressions of orthogonal polynomials

The orthogonal polynomialsPn and P̃n have explicit expressions as matrix integrals:

Pn(λ) =
∫

dM0n×n . . . dMpn×n det(λ−M0)

p∏
i=0

exp[−N trVi(Mi)]

×
p−1∏
i=0

exp[−Nc tr(Mi −Mi+1)
2]

P̃n(λ̃) =
∫

dM0n×n . . . dMpn×n det(λ̃−Mp)

p∏
i=0

exp[−N trVi(Mi)]

×
p−1∏
i=0

exp[−Nc tr(Mi −Mi+1)
2].
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Appendix C. An explicit example: the Gaussian potential,V (λ) = 1
2gλ

2

C.1. Discrete case

Let us consider a constant Gaussian potential:V ′i (λ) = gλ. We will use the parametrization
g = 4c(coshχ − 1) for later convenience.

The operatorŝλi contain only two terms, which we write as

λ̂i = αix̂
√
n̂

N
+ βi

√
n̂

N

1

x̂
.

The equation of motions are linear and thus easily solved:

αi+1+ αi−1− 2αi = g

2c
αi βi+1+ βi−1− 2βi = g

2c
βi

with the boundary conditions:

α0 = βp = α α1 =
(

1+ g

2c

)
α βp−1 =

(
1+ g

2c

)
α(

1+ g

2c

)
αp − αp−1 = 1

2cα
.

The first line implies thatβi = αp−i . The solution is then

αi = α
cosh

(
i + 1

2

)
χ

cosh1
2χ

where α2 = 1

4c sinh(p + 1)χ tanh1
2χ
.

The momentumP̂i = (1/N)d/dλi is

P̂
†
i = −2

1− Ai
a2
i

λ̂
†
i +

1

αi

√
n̂

N

1

x̂
P̂i = −2

1+ Ai
a2
i

λ̂i + 1

αp−i
x̂

√
n̂

N

where we have introducedAi = sinh(p − 2i)χ/ sinh(p + 1)χ and

ai = 2
√
αiαp−i

which will play a very important role as the natural scale forλi . In fact, 2ai is the width of
the distribution of eigenvalues of theith matrix. Indeed, in the largeN limit and n ∼ N ,
we can eliminatex and writePi as a function ofλi :

Pi(λi) = − 2

ai

(
Ai
λi

ai
−
√
λ2
i

a2
i

− 1

)
.

Its imaginary part is the density of eigenvalues of theith matrix,

ρi(λi) = 2

πai

√
1− λ

2
i

a2
i

which is a semi-circle law of diameter 2ai .
The wavefunctions can be exactly computed in terms of Hermite polynomialsHn(x):

ψi;n(λi) = ci
(
αp−i
αi

)n/2 1√
n!
Hn

(
2
√
N
λi

ai

)
exp

[
−N(1− Ai)λ

2
i

a2
i

]
ψ̃j ;n(λj ) = c̃j

(
αj

αp−j

)n/2 1√
n!
Hn

(
2
√
N
λj

aj

)
exp

[
−N(1+ Aj)

λ2
j

a2
j

]
(where ci and c̃j are some constants, irrelevant for what we need; we just know that
ci c̃i = (1/ai)

√
2N/π ).
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We can write some WKB approximations in the largeN limit:

ψi;n(λi) ∼
( π
Nc

)(i/2)−(p/4) 2(2π)−1/4

√
ai sinφi

(
αp−i
αi

)(2n−2N+1)/4

× cos

[(
n+ 1

2

)
φi − N

2
sin 2φi − π

4

]
exp

[
NAi

λ2
i

a2
i

]
ψ̃j ;n(λi) ∼

( π
Nc

)(p/4)−(j/2) 2(2π)−1/4

√
aj sinφj

(
αj

αp−j

)(2n−2N+1)/4

× cos

[(
n+ 1

2

)
φj − N

2
sin 2φj − π

4

]
exp

[
−NAj

λ2
j

a2
j

]
whereλi = ai cosφi .

Now let us compute the kernels. The propagatorEij is

Ei,j (λi, λj ) =
( π
Nc

)(j−i−1)/2
√

sinhχ

sinh(j − i)χ

× exp

{
−Nc sinhχ

sinh(j − i)χ [cosh(j − i)χ(λ2
i + λ2

j )− 2λiλj ]

}
.

This is an exact result since the saddle-point method is exact in the Gaussian case. We
also have the determinant of the second derivatives of the potentialDij (λi, λj ) which is a
constant:

Dij = sinh(j − i)χ
sinhχ

.

The kernelKij (λi, λj ) obeys a generalization of the Darboux–Christoffel theorem:{
2
λi

ai
− 2τ

λj

aj
+
(
τ − 1

τ

)(
(1+ Aj)λj

aj
+ aj

2N

∂

∂λj

)}
Kij

=
√

αi

αp−i
ψi;Nψ̃j ;N−1−

√
αp−i
αi

ψi;N−1ψ̃j ;N{
2τ
λi

ai
− 2

λj

aj
−
(
τ − 1

τ

)(
(1− Ai)λi

ai
+ ai

2N

∂

∂λi

)}
Kij

=
√

αj

αp−j
ψi;Nψ̃j ;N−1−

√
αp−j
αj

ψi;N−1ψ̃j ;N

whereτ denotes the ratioτ = √αp−iαj /αiαp−j . Let us emphasize that these equations are
exact, even forN finite (note that wheni = j we haveτ = 1 and we recover the usual
Darboux–Christofel theorem). With the operatorial notation they are obvious, being just a
rewriting of

{λi(x̂)− λi(ŷ)}Kij = {λi(x̂)− λi(ŷ)} ŷ

x̂ − ŷ ψi;Nψ̃j ;N

{λj (x̂)− λj (ŷ)}Kij = {λj (x̂)− λj (ŷ)} ŷ

x̂ − ŷ ψi;Nψ̃j ;N

(if you want to rederive them, be careful since here the partial derivative with respect toλi

carries on the bra and is aP †i ).
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In the largeN limit, we have

Kij ∼
(
π

Nc

)(i−j)/2 1√
ai sinφiaj sinφj

√
τ

4πN
exp[N(Ai cos2 φi − Aj cos2 φj )]

×
{(

1+ 1

τ

)
sin

1

2
(φi − φj ) sinN(ζi − ζj )+

(
1− 1

τ

)
× cos

1

2
(φi − φj ) cosN(ζi − ζj )

}{
1+ τ 2

2τ
− cos(φi − φj )

}−1

+(same thing withφj →−φj )
where we have notedζ(φ) = φ − 1

2 sin 2φ.
For i = j we haveτ = 1 and we recover

Kii(λ, µ) ∼ 1

ai

√
sinφ sinφ̃

1

4πN

(
sinN(ζ(λ)− ζ(µ))

sin((φ − φ̃)/2)

)
exp

[
N

2

Ai

a2
i

(λ2− µ2)

]
which gives forλ = µ the density of eigenvaluesρi(λ) = (1/πai) sinφ.

When i 6= j , we note that the denominator never vanishes. It is maximum when
φi = φj , i.e. λi/ai = λj/aj ; this is the regime in which one could have a not too small
correlation.

C.2. Continuous limit

The continuous limit can be obtained by settingc = 1/2ε, t = iε, T = pε, g = εν2, and
taking the limitε → 0.

We find

α2 = 1

ν sinhνT

λ(x, t) = α
(
x coshνt + 1

x
coshν(T − t)

)
which we write as

λ(φ, t) = a(t) cosφ

wherea(t) is given by

a(t) = 2α
√

coshνt coshν(T − t).
In the small-distance regime (δλ small andδt small), we have (up to some normalization

factors which will cancel when we compute the correlation function)

K(λ, t |λ+ δλ, t + δt)∼ 1

2πN

1

a sinφ

δφ sin(Nπρa sinφδφ)+(2/a2)δt cos(Nπρa sinφδφ)

2(δt2/a4)+ 1
2δφ

2

1

N
E(λ, t |λ+ δλ, t + δt) ∼ 1√

2πNδt
exp

[
−N

2

(
a2 sin2 φ

δφ2

δt
+ 4

a2
cos2 φδt

)]
.

Thus we have the two-point connected correlation function

ρ(c)(λ, t |λ+ δλ, t + δt) = −K(λ, t |λ+ δλ, t + δt)
×
(
K(λ+ δλ, t + δt |λ, t)− 1

N
E(λ, t |λ+ δλ, t + δt)

)
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which gives

ρ(c) = − 1

4π2N2a2 sin2 φ

δφ2 sin2(Nπρa sinφδφ)− (4/a4)δt2 cos2(Nπρa sinφδφ)

(2(δt2/a4)+ 1
2δφ

2)2

+ 1

(2πNδt)3/2
δt

a sinφ

δφ sin(Nπρa sinφδφ)+ (2/a2)δt cos(Nπρa sinφδφ)

2(δt2/a4)+ 1
2δφ

2

× exp

[
−N

2

(
a2 sin2 φ

δφ2

δt
+ 4

a2
cos2 φδt

)]
. (C.1)

Appendix D. The loop equations

The loop equations are nothing but the consequences of reparametrization invariance in the
partition function. For instance, for the one-matrix model [20, 21]

Z =
∫

dM exp[−N trV (M)].

The loop equation is a quadratic equation for the resolventω(z) = (1/N)tr(1/(z−M)),
ω(z)(V ′(z)− ω(z)) = P(z)

where P(z) is a polynomial in z, whose coefficients (except the leading one) are
undetermined by the loop equations:

P(z) = 1

N

〈
tr
V ′(z)− V ′(M)

z−M
〉
= Polω(z)V ′(z).

The coefficients ofP have to be determined by some physical input, such as some
assumption about the analyticity structure ofω. The most usual input is the one-cut
assumption: the requirement thatω has only one cut in the complex plane, i.e. that the
support of the density of eigenvalues is connected, which is expected to be the case for a
single-well potential.

The case of the chain of matrices is very similar: the resolvent fulfils an algebraic
equation, with an undetermined polynomial on the right-hand side. Here, we will just give
the final result, and the recipe to write down the algebraic equation forω(z) but without
any proof.

Consider the chain of matrices

Z =
∫

dM0 . . . dMp exp

[
−N tr

∑
i

Ui(Mi)− 2c
∑
i

MiMi+1

]
(note that the potentialsUi(Mi) = Vi(Mi) + 2cM2

i have here been shifted by a quadratic
term). We will consider the resolvent of the first matrixM0†

ω(z) = 1

N

〈
tr

1

z−M0

〉
.

The loop equations are obtained by performing the changes of variables

Mi −→ Mi + ε 1

z−M0
M
np
p M

np−1

p−1 . . .M
ni+1

i+1

† In fact, one can easily obtain a closed algebraic equation in the largeN limit only for the resolvent of the first
(i = 0) and last (i = p) matrices.
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and by multiple recurrences on theni ’s. The proof is quite tedious but not difficult. We
will first need some notation. We define the function

z0(z) = z z1(z) = 1

2c
(U ′0(z)− ω(z))

and

zi+1(z) = 1

2c
U ′i (zi(z))− zi−1(z) for 0< i < p. (D.1)

Each functionzi(z) is a polynomial inz andω(z).
The algebraic equation satisfied by the resolventω(z) is then(

1

2c
U ′0(z0(z))− z1(z)

)(
1

2c
U ′p(zp(z))− zp−1(z)

)
= 1

2c
P (z0(z), . . . , zp(z)) (D.2)

where the right-hand sideP(ζ0, . . . , ζp) is a polynomial ofp+1 variables (now considered
as independent),

P(ζ0, . . . , ζp) = 1

N
〈trFp+1〉

and theFn’s are defined as follows:

F0 = 1 F1 = 1

2c

U ′0(ζ0)− U ′0(M0)

ζ0−M0
Fn+1 = 1

2c

U ′n(ζn)− U ′n(Mn)

ζn −Mn

Fn − Fn−1.

Note that (D.2) looks symmetric under the exchange of the two extremities of the chain
i → p − i.

As in the one-matrix case, most of the coefficients of the polynomialP are unknown;
they have to be fixed by some analytical considerations aboutω(z), for instance impose that
ω(z) has only one cut. This one-cut assumption should allow one, in principle, to determine
all the unknown coefficients ofP .

We have made exactly the same assumption when we have replaced the operatorx̂ by
a numberx in the largeN limit (cf section 1.3), and we observe that the functionsλi(x)
give a parametrization of equation (D.1). In fact, ifz = λ0(x) then eachzi(z) is nothing
but λi(x), and the loop equation (D.2) is nothing but the product of (1.16) and (1.17).
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