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Abstract. The universality of correlation functions of eigenvalues of large random matrices
has been observed in various physical systems, and proved in some particular cases, as the
Hermitian one-matrix model with polynomial potential. Here, we consider the more difficult case
of a unidimensional chain of Hermitian matrices with first-neighbour couplings and polynomial
potentials.

An asymptotic expression of the orthogonal polynomials and a generalization of the
Darboux—Christoffel theorem allow us to find new results for the correlations of eigenvalues
of different matrices of the chain.

Eventually, we consider the limit of the infinite chain of matrices, which can be interpreted as
a time-dependent Hermitian one-matrix model, and give the correlation functions of eigenvalues
at different times.

Random matrix theory (RMT) was introduced by Wigner [1] to describe statistically the
intricated structure of energy levels of heavy nuclei. More recently, the spectra of many
guantum systems (presenting chaos or disorder) in condensed matter physics have been
observed [2] to be well described by RMT. The properties of such quantum systems
are indeed modelled by the eigenvalues and eigenstates of some operators or matrices
(Hamiltonian, transfer matrix, scattering matrix), see [3, 4] for a review of RMT in quantum
physics.

The main reason RMT provides such a powerful tool to study quantum systems is
its universality. As the distribution of a large number of independent random variables
converges towards a Gaussian law (central limit theorem), the distribution of eigenvalues
of large random matrices seems to converge towards one of the three Gaussian laws (GOE,
GUE, GSE) depending on the symmetries of the matrices: orthogonal (time reversibility),
unitary (time reversibility broken) or symplectic (half-integer spin dependence).

For instance, it has been observed or proved for a wide number of models that the
two-point connected correlation function does not depend on the details of the system
[2,5, 6] in the short-distance regime (of the order of the mean spacing), while the density
of levels is very dependent on the specific details of the system. In addition, it has been
observed [5, 7, 8], at least in the case of Hermitian matrices, that the correlation functions
should present some universality in the long-distance regime as well, once the short-distance
oscillations have been smoothed out.

1 E-mail address: bertrand.eynard@durham.ac.uk
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At least for Hermitian matrices, those conjectures [9] have been proved in a few special
cases, such as in the one-Hermitian-matrix model with polynomial potential [1,5, 6, 10],
the one-Hermitian-matrix model in an external potential [11], and the two-Hermitian-matrix
model [12].

The analysis of [5,12] was based on the method of orthogonal polynomials. The
correlation functions are expressed in term&efels depending on two variables, which
are sums of polynomials. Those results are exact and have been known for a long time
[13]. The problem was to derive an asymptotic expansion of the kernels in the Marge
limit (N is the size of the matrices), which is a hard task since the kernels involve the
sum of N polynomials with degrees running from 0 1 — 1. In the one-matrix model
case [5], the Darboux—Christoffel theorem allowed one to rewrite the kernel with only
two polynomials of degre&v and N — 1. An ansatz for the asymptotic expression of the
orthogonal polynomials was then used to evaluate the universal correlation functions in the
short-range regime.

This ansatz was proved in [6,12] and generalized to the two-matrix case, and it was
claimed in [12] that this method could probably be extended to a chaip cdndom
Hermitian matrices\4, ..., M,, where each matridf; is coupled linearly to the following
one My,1.

In particular, when the number of matrices of the chain becomes infinite and the coupling
is chosen appropriately, this model can be viewed as a time-dependent random matrix. The
coupling between neighbouring matrices of the chain is then a kinetic term of the form
(dM /dr)2.

The aim of this paper is thus to generalize the analysis of [5,12] to the chain of
Hermitian matrices. The paper is organized as follows. Section 1 concerns the discrete
chain and section 2 the continuous-time limit. In section 1, we first present the matrix
model, recall the orthogonal polynomial method, and then relate the correlation functions to
the orthogonal polynomials via the kernels and generalize the Darboux—Christoffel theorem
in order to rewrite these kernels as a sum of a finite number of terms. A WKB approximation
of the orthogonal polynomials allows one to find asymptotic expressions of the kernels, and
thus to find the correlation functions in the largyelimit. We then conclude by examining
the universal properties of these correlations and the possible generalization of the method.

1. The chain of matrices

Let us first present the model and introduce the notation coherent with that of [12].
Consider a linear chain gf + 1 random HermitianV x N matricesM; (0 < i < p),
with a probability law

P p-l
P(M;) = % [[expl-Ntr Vi) [ ] expl-Netr(M; — M) (1.1)
i=0 i=0

where theV; are polynomial potentials¢ is the coupling constant between nearest
neighbours, and is the partition function. (In section 2, we will consider the continuum
limit of this model: the index will become a continuous variable, the time- i, and with
2c = 1/¢, the quadratic tern}_, ¢ tr(M; — M;1)? will become a kinetic terny 2 M2(¢) dt.)

The Harish—Chandra—Itzykson—Zuber formula [14] allows us to integrate out the angular
variables (the unitary group), and leaves us with the joint probability for the eigenvalues
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(let us noter;.; (0 < j < N — 1) the jth eigenvalue of the matrii/;):

1 14 p—1 N
plrijl = ZAGDAG) Qexp[ - N ; Vi (i ,-)} 11 det| expl-Nc(hix = Aiv2:)°]]

1.2)
where A are the Vandermonde determinants:
AG) =[]k = 1)

k<l

We would now like to compute the conditional probabilities of some subs#tthese
N x (p+1) eigenvalues. We thus have to integrate (1.2) over all the eigenvalues which do
not belong tol. For instance, the density of the eigenvalues\tfis

pi(Ai;1) = /p[/\] [T drw
(K70, 1)
the correlation function of two eigenvalues &f; is
pii (Ai;1, Ais2) = /;0[)&] l_[ A2k
(J0#.1).3G.2)
and the correlation function of two eigenvalues of two matritgsand M; is
Pij iz, Aj;1) =/,0[)»] [T
(LRAD, (. D)

As in the one-matrix case [5, 12], all these densities and correlation functions can be
calculated by the orthogonal polynomials method [15]. Let us recall this method [4].

1.1. Orthogonal polynomials

Consider two families of polynomial®, and P,, of degreen, beginning with the same
leading term, and which obey the orthogonality relation

/ dig... dr, exp[ -N> V,-()»i)} exp[ —Ne) (i — )\,.+1)2}7>,, (:0)Pr(hp) = Sm.
(1.3)

Such polynomials always exist when tigs are polynomials, except in some degenerate
cases. We then define the wavefunctignsand, by

Y (Ao) = Py (Ao) €Xp[—N 2 Vo(1o)]
Va(hp) = Pu(hp) €XPI=N 3V, (3]

(note that the normalizations differ from [12]). With the help of the orthogonality relation
(1.3), we can define two families of Hilbert spacgs E;, and the orthogonal functions in
each of them:

1//o,n ()\O) = I//n ()"O)
Yin(Xi) = / Ao .. dAi—1 ¥ (ho) XPI=Nc((ho — A2 + -+ - + (i1 — A)?)]

1 1
X exp[—N (E Vo) + Vi(r1) + -+ + Vica(hi—1) + EVi()\i)>i| (1.4)
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1/N}p;n()\p) = 1/};1()"[2)
Vi (M) = / itr ... dhp Yu(hy) €XPI=Ne((hi — Ais)? + -+ (pe1 — )]

X eXp|:—N (%Vi()»i) + Viprig) + -+ Vo) + %Vp()»p)>:| .
(1.5)
We shall denote them by the convenient Dirac notation:
(nli =Yim — n)i = Pin- (1.6)

In the spaceF;, we have the orthogonality relation

/ d)‘-i wi;n()\i)&i;m()\i) = <n|m)z = (Snﬁm-

In each of these spaces, we can define the usual operators (acting on the right-hand side,
the ket):

e };, the operator which multiplieg; (%;) by A;;

« P = (1/N)d/dx; which differentiates); with respect tah; .

These operators are defined only in the Hilbert spAce However, all theE; are
isomorphic, and an operata@? initially defined in E; can also be defined in any; by its
matrix elements:

def

n1O1m); ' (n] O1m), =/ dhi Wion () O iom (1),

Henceforth, we will drop the indek for the bras and kets.

1.2. Equations of motion
From the former definitions we immediately obtain the equations of motion:
Py =2c(hiz1 — A) — $V/(h) 1.7
Po = 2c(h1 — ko) — SV4(Ro) P, =2c(hy —hp-) +3Vi0,)  (1.8)
and with an integration by parts
M1t — 2 = 2—]-0‘4/(5»5)- (1.9)

Let us now introduce a more convenient notation. Since we began with polynd®ials

and?,, we know how the multiplications or derivations hy or Ap will act: multiplication
by 1, raises the degree @, by 1, andx,P,(%,) can be decomposed onto the base of the

Pr_i With k > —1:
MpPap) = M) PuraOp) + Y @) Py_i(hy)

k=0

(where a(n) is the ratio of the leading coefficients &, and 7,1, and thea,(n) are
coefficients to be determined later).

Let us write this in operatorial notation. For this purpose, we introduce the shift operator
X, which decreases the level (annihilation operator), and the level opérator

Xn)=|n-1) (n|x = (n + 1] nln) = nin).
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Although % is not invertible, we shall abusively writét = 1/%, for it will make no
difference when we go to the largé limit, and it will considerably simplify the notatign
We can then write

A 1 . k. o - 1 Ak~ o
ho=za@) + ) Ha@ R, =za@) ) Ham). (1.10)
* k>0 . >0

Remember thaio acts on the keln), i.e. on the polynomiaP,, its adjoint acts on the bra
P.. Note also that the first terne;(n), is the same for bothg and A, because we have

chosen the polynomial®, and P, with the same leading coefficient.
Similarly, noting that the operatoP = (1/N)d/dr, decreases the degree of the
polynomial , (%,) by 1,

d - 1 ~
— P = ——— P, 1+
dx, (%p) a(n—l)n Lt
we can express the operatabs and 13,, in power series ofk:
N1 1 .n
Bl + 2V = ——2— + O(#? 1.11
o+ 5Vo(%o) a(fz)xN+ (x%) (1.11)
P, + 1V/(A ) 1 oA +0(x?) (1.12)
= = X— X). .
P2 P a()T N

We might as well write any of the operataks with such a notation,
A= Zai;k(ﬁ))?k
k

but let us first go to the larg®’ limit.

1.3. Large N limit

In the classical limitv — oo, all these operators become numbers. Indeed, the commutators
[P,2] = 1/N and [, #/N] = £/N are proportional to AN which thus plays the role of
hi. We then write
P -
M) =) eyt with — [] degv/ <k <[]degv;. (1.13)
k Jj=i+1 Jj=0

The bounds ort are easily derived from the equations of motion and boundary conditions.
We also consider the limit whereis large and close t&/, so that to leading order the ;
no longer depend on, rather they are just coefficients.

In addition, there exists a remarkable relation (the proof from the canonical commutation
relations is not difficult but of no interest for what follows):

T=c) k(@it1h — i1, & 0<i<N. (1.14)
k

T We havex|0) = 0, andx is not invertible only on one stat®). This will have no consequence because all

the physics takes place at the ‘Fermi levgV). One way to give a rigorous meaning £61 could be to define
negative states—1), provided that all they(—1) vanish, which is true.

1 Actually, this is true only if the support of the density is connected, i.e. we assume we have a one-cut solution;
for a k-cut solution, we would need to consider the operatoré ask matrices. For example, for a symmetric
double well, one needs to distinguish between even and odd valugsniiich introduces two sets of coefficients
ax(2n) and oy (2n + 1).
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Let us rewrite in the classical limit the equations of motion (1.9) and the boundary conditions
(1.11) and (1.12) previously written for operators. We have the following system of
equations:

it Aipa— 24 = z—lc‘//()»i) 1<i<p-1 (1.15)
with the boundary conditions

V§00) — 2604~ g) = = +0(1/x) (1.16)

V/(hp) = 260y 1 — Ap) = 2 +0(:). (1.17)

One can verify that we have exactly as many equations as unknowns. If we were able to
solve this system of algebraic equations and determine alkthewe could definep + 1
functions; (x), of an auxiliary variablec. We will see later the important role they play.

1.4. WKB approximation

One can find (by a simple generalization of [12], i.e. by performing a kind of saddle-
point method for matrix integrals on the explicit expressions given in appendix B) some
asymptotic expressions of the., in the limit N large andln — N| ~ O(1):

Ao) ~ ”_Mll"—’vx 2N xx Ao) Al
Yo,n (Ao) Z (E) J_Ekg(x)x e p[— C/ (A1 — A0) o:|

x/Ao(x)=ho
N
X eXP[E Vo()»o)}
i/2=p/4 x
b4 1 1
in(Ai) ~ — — =N ex —N/ Aig1 — Aie )J]
w00 =2 (5e) G ew e [ e mnen

p/4 1 1

) T
) ~ Y (72 V2 iy

=N exp[ — 2ch Ay — )Lp_l))ﬁp}

(1.18)
————x¥ " lexp |:2Nc f (b — AO)AE,}

B o \P/4izq 1 Nen1 x
in(Ai) ~ - —————x"""""exp| N Ait1— Aj_ )\,l/
Vion (M) ;(NC) = T p[ c/( 11— A1) }

N—n-1 exp|:2Nc/ (Ap — )u,,_l))»;,]

. T\ 1 1
S~ ()AL,
Vpin (hp - (NC) 21 /—)u;,(x)
N
X exp[E Vp()»p)i|.

We shall not prove those asymptotic expressions, but just give some intuitive explanations.
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e First, observe that to leading order they all have the form
A 5 Ai
v ~ exp[ — N/ P; dx\,} and Y ~ exp[N/ P; dk,-:|

which is simply the solution of the differential equatid?,-nn) = (1/N)(d|n)/dxr;) in the
large N limit. The lower bound of the integral, which has not been written here for
simplicity, depends om; it is determined by the condition thgﬁ“ V! (ui) dui = Vi ().
e The x"V term comes from the definition &f:
(N|2"N = (n].

e Moreover, observe that the approximation fgr, ; can be derived frony; by steepest
descent in (1.4), and the expressions for #Hs can be derived from th¢’s by x — 1/x
andi - p —1i.

¢ Finally, the normalization constants ang, Zﬁn)\;(x) are just what is needed to satisfy
the normalization condition

Note that this is nothing else than the WKB approximation.

Remember that, in quantum mechanics, the wavefunction of a particle outside a potential
well decreases exponentially, while inside the well it is a stationary wave, i.e. a superposition
of two opposite progressing waves. This is also what we have here.

e The sum overx means that you have to consider the valuesxpfsolutions of
Ai(x) = A; which have this property. Wheh; belongs to §;, b;] (the support of the
density of eigenvalues of th#h matrix), the equatiok;(x) = A; has no real solution, it
has only pairs of complex conjugate solutions, which give the stationary wave. The sum of
the two complex solutions will give rise to some real expression/fgy, involving cosine
and sine functions instead of exponentials (cf [5, 12]). Wheis outside §;, b;], you have
to keep only the solution which decreases exponentially at infinity.

Henceforth, we will consider only the first case, ie.€ [a;, b;].

1.5. Kernels

Remember that we have introduced the orthogonal polynomials in order to integrate the
joint density (1.2) over a subsétof the N x (p + 1) variables [4, 16]. For this purpose,
let us as usual [4] rewrite the Vandermonde determinants:

A(ho) = [ [(hok — 2oa) = deti o).
k<l k.t
Since linear combinations of columns preserve the determinant, we can rewrite

A(Ag) = cte gleﬂpk—l(ko;lﬂ
Ay) = cte detPi_1(1p)l.

The cte is a normalization which comes from the fact that the polynorlaland P, are
not monic (in fact, cte= ]_[,’fz‘ola(n)N‘l‘”). Any partial integration of (1.2) can thus be
written as an integral over thg;., and &j;m. Since they are orthogonal, the integration is
easily performed, and the final result can be written in terms(pf-21)? kernels defined
by

1 .
KijGhis 2 =+ - Vin G i) (1.19)
n=0
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and
0 ifi >
N 2 I .
expy——=[2c(hi — iz +Vi(Ai)+Vie1(hisa)] ifi=j—-1
Eij(hi,hj)= 2 (1.20)
\J J
j-1 j-1
/ l_[ d)\[ 1_[ E1,1+1()»1, )»1+1) If I < ] -1
I=i+1 I=i

In the p = 1 case discussed in [12] there were only four kernels §hg; indeed, the
E;; which were just numbers were absorbed into the normalizations. However, in the
general case, thg;; contain integrations and cannot be absorbed. Note thakthare the

propagators fromy; to v; (i < j):
/ drj Wjon O Ei j iy ) = Yizn Oui)

[ 000 B0 3) = 0300,
We thus have the following projection relations:

/ d)\.] EijEjl = E,‘] if i < J <

/ d)uj Ei_jKl_j = K[,' if i <j
(1.21)
/d)\,, EinilZKj[ if i <j

1
d)\.j Kinj[ = NK,’].

1.6. Correlation functions

In terms of these kernels, the joint density (1.2) of all the eigenvalues of all the matrices
can be rewritten:

p = Ccte detKO,,, detEo’l detE]_,z Ce detE,,_l,,,.

To obtain the densities and correlation functions of some set of eigenvalues, we have to
partially integratep with respect to the other eigenvalues, and this can be done [15] with
the help of the projection rules (1.21). The general result is given in appendix A. Here, we
will only consider the one- and two-point functions.

The density of eigenvalues (the one-point function) of itthematrix is

pi(Ai) = K;i(Ai, X) (1.22)

and the two-point connected correlation function of one eigenvelwd the ith matrix and
one eigenvalug; of the jth matrix is

c 1 . .
p;(,,?()tu wi) = —K; j(Ai, up)Kj i (i, &) + NKi,j()\ia HOHE; j(Ai, ) (<j). (1.23)

We now have to evaluate the kernéfs; and E;; in the largeN limit. The first step
will be a generalization of the Darboux—Christoffel theorem, which allows one to rewrite
K;; as a sum of a small number of terms, instead of the sum ¢érms as in (1.19). The
second step will be to use the WKB approximations (1.18) fory® The propagators
E;; will be evaluated by steepest descent.
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1.7. Generalization of the Darboux—Christoffel theorem for the kernels

As in [12] the Darboux—Christoffel theorem can be generalized. Formally, we write that

Vin(o) =2V Yin (o) Py = RV v () (1.24)
and we sum up the geometrical series in (1.19):
1 v ~

Kij0is ) = 3 725 Vi i G (1 0) (1.25)

(we have calledy the operatort acting on the second variable). Multiplying both sides
of (1.25) by ¢,;(x) — 1;(¥)) would give on the left-hand side a differential polynomial
acting onk;; (indeedx;(y) can be rewritten as a polynomial }r) and 13_,- with the help of
equations (1.7) and (1.9)), and on the right-hand side a polynomialaind y, i.e. a small
number ofy;., and &j;n with |n — N| < N (an explicit example is given in appendix C).
However, we will not do this, but use (1.25) directly in the lafgdimit, wherex and y
become numbers andy.
The kernels can thus be approximated by

1 -
KO aj) ~ N}%ywiwai(x))maj(y)>

and using the WKB asymptotic expressions (1.18)/pf and &j;N
1 1 1

« Z( P )(l—]‘)/2
ij S Nc 2N x —y /k;(x)k}(y)
X exp[ - NC(/ (hig1 — Ai—D)A; — / (Ajy1— )»jl))»}>] (1.26)

wherex andy appear in complex conjugate pairs, solutionsiaf) = A; andi;(y) = ;.
One can also find an asymptotic expression for the kefipeby steepest descent:

(j—i=1/2
T 1
Ei~|— ————eXp[—-NcU;; (A, A; 1.27
! (NC> Djj(x,y) Pl 1G] ( )
where
j—1
Uij(h, n) = Z (= M) + iVJ(M) + iVl 1(A41)
A — + 2c 2c TR
A (A, ) are determined by the saddle-point equation
1
Ai=A )Lj =N 20 + Z—V/()L[) = A1+ M1 fori <l < Jj
C
andD;; is the determinant of the matrix of the second derivative&;gfwith respect to the
AS:
VI 1(Riv1)

2+ 1 0 ... 0 0
2c
1 gy izl 4 0
2c
D,’j = det 0
0 _1 2+M _1
2c

0 0 0 _1 oy Vi)

2c
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In the particular case = y we have

Uij(x,x) = —/ (Aig1 — Ai—)A; +/ (hjr1 = Aj-DA;
and

1 20n ()
Dijj(x, x) = Z m

I=i

Substituting (1.26) and (1.27) into (1.22) and (1.23) we can now evaluate the correlation
functions.

1.8. Correlation functions in the short-distance limit
Casei = j
Settingi = j in (1.26) gives

1 1 1 '
Kii(h, pu)~ Z i eXP| ~ NC/ e Aiil)k;
2iTN x —y /A ()N () y

Xy
wherex andy are the complex solutions af (x) = A andx;(y) = . Whena is close to

u, to leading order, we keep only the valuesxofind y such thatjx — y| is small. This
then reduces to

1
Kii(A, ) ~ AN — g

x exp[~=Nc(r — p)Re(rip1 — A;i-1)].

sin{Nc(h — w)Im (Ajy1 — Ai—1)}

In particular, whem. = 1 we obtain the density
c 1
pi(A) = K;i(A, 1) = —;Im Rip1(x) = Ai—1(x)) = —;Im Pi(x). (1.28)

When is close tou but different, we can compute the two-point connected correlation
function

Py ) = =K i O Ky (i, 1)

NaO— ) (1.29)

and we recover the universal two-point correlation function in the short-distance regime.

g SiINNT (L — )i (1) \?
Ioi(,i) A, ) A:u - <

Casei # j
It is now meaningless to consider the limit close to); since they are eigenvalues of
different matrices. GenericallyX;; is of order YN, which means that the connected
correlation function is of order /IV2, and we can say that in the large limit A; and A;
are uncorrelated.

The only limit in which the correlation may become larger thawvi is the case where
x — y becomes small. The equatian= y defines a functiork;(;). The problem is that
this function takes complex values in the interesting domain—for example, we see from
equation (1.28) that, . 1(A;) or A;_1(%;) take complex values (this fact has already been
debated in [12])—and we have not found any physical interpretation, except in the case of
the continuous model described in the next section.
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However, let us assume thiat— y| is small (we will also assume< j). We introduce
the scaling variable

A =VN(x = y) /a2 /i.
ij

In the limit |[x — y| — 0, the Taylor expansion of the term appearing in the exponential in
(1.26) gives

AN

* / Y / )Li)hj 2 3
/ (Ait1 — Ai—DA] —f Ajp1—Aj—)A; = =U;; + D (x =)+ 0((x —y)?).
ij
Therefore, we have

Kij ~ <l>(i*j)/2 1 Le"‘NCUijie_Az

Nc 2in/NV Djj A

T \G-D/2 1 c 1
Ki~ (1) o e e (1.30)

Nc 2ir/NV Dij A
LN (1)“*’”/2 1 [ gwe,
N7 \Nc JaVNV Dj '
Remember that each of these expressions is actually a sum over the different vatues of
andy satisfyingx;(x) = A andx;(y) = n. However, since. and . are not assumed real,
the different values ok or y contributing to this sum are not the complex conjugates of
each other, and the exponential term cannot simply be replaced by a sine function.

However, we have the correlation function

1 ¢ 1 1 2
© _ = Ny —_2 e A" ) e Nl 1.31
Iol’J A—)OXX\; 4n2N D,‘j A XXV: <A ﬁ ) ( )

To go further one would have to make some assumption on the argumenarad y
(i.e. where in the complex plane axeand ), and then separate the imaginary and real parts
of U;; and A. We would then observe that in this scaling regire y| ~ 1/v/N), o)
is of order Q1/N) instead of @1/N?), and that it presents some kind of universality: it
does not depend very explicitly on the potenti&l$r). The signification of this correlation
function is therefore not clear, and has to be further studied. However, this calculation
was performed to prepare for the next section, the continuous chain of matrices, where it is
possible to have both and real and(x — y) small, becaus®;; will be small too.

1.9. Smoothed functions

It has been argued that once the short-distance oscillations of the correlation functions have
been smoothed out, they should present some universality properties, i.e. they do not depend
on the potentiald/; (cf [8] for the one-matrix model).

Indeed, when we smooth expression (1.23) (we keep only the terms which do not
oscillate at frequency in the sums over andy, i.e. those for which the exponentials
exactly cancel), we obtain

1 x'(A)y' ()

A72N2 (x (i) — y(1)))?
This result is exactly the same as for two matrices [7, 12, 17] and recalls the universal result
of [8].

+ complexconjugate (1.32)

p,‘(,cj) (i, )Lj )smooth ™
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2. Continuum limit

The model of a chain of matrices is naturally extended to the model of a time-dependent
random matrix. We replace the integer indeky a continuous time = ie, which runs
from 0 to T = pe. The coupling term:(M; — M, 1)?> becomes a kinetic term and we set

1 1
C:Z lZ—);/dt %(A)—)EV()L,t)

The partition function thus becomes a functional integral for a one-dimensional matrix field:

T r1/dM\?
Z:/D[M(t)]exp[—Ntr/ dt(—(—) —i—V(M(t),t))].
0 2\ dr

Time-dependent or parameter-dependent random matrices represent out of equilibrium or
more realistic physical systems, and have been much studied [18, 19]. The usual observables
are the correlations of velocities, and the curvatures (second derivatives with respect to time),
which can probably be derived in the context of the results presented here but which we
shall consider now, are just the limits of the results of section 1, i.e. the two-point correlation
functions.

We now have a set of orthogonal wavefunctions depending on time

Vin(A) —> Y (A, 1) and Vin(A) —> YA, 1)

which satisfy the orthogonality relationship
/ dr ‘Pn()w t)&m()‘s t) = 8n,m-

In fact, one has to change the normalization, just to absorb the constant fag¢tor)’/?
of equation (1.18) which becomes infinite in the continuum limit. However, this does not
change anything else.

2.1. The functiori(x,t)

We can define a family of functions(x, t) of an auxiliary variablex:

M) — A, 1) =) ar(n)xk. (2.1)
k

Note that according to equation (1.13)runs from—oo to +oo (except for the Gaussian
case), so that (2.1) has to be taken as a formal expansion in the Laurent series.
A(x, t) obeys the continuous limit of the equations of motion (1.15)

.92 ,
X = ﬁk(x, 1) = V' (\(x,1)) (2.2)

with the boundary conditions (1.16)

Ax,0) = ax + Zak(O)x’k i(x,0) = _1 +O(1/x?)
X

k<0 2.3)

1 .
MxT) = Za+ Y e A T) = ;—C + 002
k=0
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These last conditions can be rewritten in a way which does not involve any expansion in
powers ofx+:

. 1
A ~ — hena
(x,0) 2. 0) wheni(x,0) — oo
. 1
Ax, T) ~ wheni(x, T) — oo.
AMx,T)

However, to define the functian(i, ) you cannot avoid performing the formal expansion.

Remark.Equation (1.14) becomes,, kaxa— = 1.

2.2. The momenta

The momentumP (x, ¢) is the time derivative oh(x, r) (equations (1.7) and (1.8)):

. 0A .
P(t)y=A= m =v(A,t) —lmp(A,t).

X

Its imaginary parto(, t) = (—1/7)Im P(¢) is the density of eigenvalues at time

2.3. The kernels

The discrete kernel&;; and E;; naturally have some continuous version:

N-1
KijOo i) — KOl 6y = = 3 G (i, 1)
n=0

At)=p

D[A(r)]exp[—N/t df(%wr V(A(r),r)):|.

E is the usual quantum mechanics propagator for a single particle in the poténtial

Eij(A,u) — E(\, tip,t') = /
A=A

nOu ') = / A Wi (1 OV E o 13, 1)

and these kernels allow us to calculate the two-point connected correlation functian)(

/ 1 /
p O, sty = =K, t|u, t’)<K(M, Ul t) — S EC i1 )>.

2.4. Correlations

Let us calculate the two-point correlation in the limit whéve= A — n andér = ¢ —¢" are
small, of order IN. In this purpose, we have to evaluate the kerkiél, ¢|A + SA, ¢ + 8¢)
with the WKB approximation (1.26) (remember that we have absorbedtth€d) factors):

1 1 -1 A A+
K~2Re—————"¢ —N PV, t)ydy — PV, t+8t)d)
2ifN /3 ) 8x Xp[ <f @0 / ( +o0) >j|

T Even in the discrete casewp(ro(x)) = 2c(Ao(x) — A1(x)) + Vi(ro(x)) is the resolvent of the first matrix
wo(X) = (L/N)(Tr(1/(x — Mo))), andwp (Ap(x)) = 2c(Xp(x) — Ap_1(x)) + V,;(Ap(x)) is the resolvent of thepth
matrix. The resolvent behavesa@agi) ~ 1/1 at largex. In the continuum limit, we have (A(x, 0), 0) = —i(x, 0)
andw(A(x, T), T) = i(x, T). For the intermediate values pfintermediate times), there is no simple relationship
between the resolvems; (A) (v (2, 7)) and the functions.; (x) (A(x, t)).
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where P(1,1) = A = (3Ar/31)|, = v — imp. Writing 84 = X'8x + P8t the denominator
A'éx is 81 — vdt + impdt, and the term in the exponential BSA + §¢ fl(aP/at)h which
is evaluated through a play with the partial derivatives diked or x fixed:

vioy=iz 0P| 3P| 2P| o
TR N TR T PR R A
We thus obtain
1 .
K ~1Im - exp[Nizp(vdt — §1)]
Nm(vét — 51 — Impdt)
1 1
X exp[N (usx + 8t (V - Evz + Enﬁ?))} . (2.4)
Similarly, observing that the continuous limit &f;; is

1

—D,']' ~ 28t

P’

the asymptotic expression (1.27) férturns into

1E ! ex [ N(l(”‘2 +V8t>i|
N V2T N8t P 2 6t

e Equal time correlations. Whesr = 0 we recover the usual one-matrix model result:

for §t > 0. (2.5)

SINNTPSL) s
NméA '

For instance, whe®r = 0 we obtain the one-point function (the densi®)= p. When
8A # 0 but of order ¥N, we have the universal correlation function:

K

Sin(N7p 81 )2

O, 1]) 4 81, 1) ~ —p?
P (A tA+ ) P N7poh

Therefore, at equal times, the correlation function of close eigenvalues is still universal.
e Different times. Whensr # 0, the denominator oK never vanishes. It reaches its
minimum for A = vdr. We shall thus consider the regime

S\ = vét and 8t ~1/N

where we have

1 1
K~—" exp[NBt (V + Evz + Enzpz)}

Nn2p28t

and

v~ T oo o (V27

—FE~ ————exp[—-Nét |V +=v .

N 2N72p28t 2
Thus

1(1 7 ez

OO, t]h 4+ 81,1 +81) ~ —p?>= | = - with A = N2p25st 2.6
P (A, t|A + vét, 1 + 8t) pAA+2\/K T°p (2.6)

which is remarkably universal; it does not depend on the precise form of the potential
V(A1)
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3. Conclusions

We have thus, as announced in [12], generalized the properties of the correlation functions
of the two-matrix model to the chain of matrices.

As expected, the chain of matrices obeys the same universal properties as the one- and
two-matrix models. We obtain similar results.

e The correlation function is generically of ordefX?, except in the regime where the
denominator of the kernet becomes small. This may happen only at a small distéice
and at a small time intervalr.

e At equal time §r = 0) we recover exactly the well known universal correlation
function of the one-matrix model. This is therefore one more matrix model where this
universality is proved.

¢ At different times §¢ > 0), the two-point connected correlation function is again a uni-
versal function o8¢ and the covariant intervalh — vét, i.e. it does not depend on the poten-
tial V (A, t) (indeed the term involving/ exactly cancels when multiplying (2.4) and (2.5)).

Moreover, we have given a very explicit way to compute the correlation functions.
This method (the generalized Darboux—Christoffel theorem) might allow one to compute
the correlation functions even fo¥ finite, provided one knows the orthogonal polynomials,
although what we have computed here is an approximation in the Mr®it, using the
WKB approximations of the orthogonal polynomials.

This method has shown that the functie®) plays a very important role; as the best
auxiliary variable, its physical meaning should be better understood, beyond the orthogonal
polynomial’'s method. For instance, another way of solving the chain of matrices is through
the loop equations (the invariance of the partition function with respect to the change
of variables, see appendix D). The loop equations exist even for models which have no
orthogonal polynomial methods, and enable one to compute the subleading terms in the
1/N expansion. These equations (in the largdimit) can be written (appendix D) as an
algebraic equation (of very high degree) for the resolvent of the first (or last) matrix of
the chain. The parametrization af and w(A) as functions ofx allows us to solve this
algebraic equation, or at least to reduce drastically its degree. This is an indication that the
functionx (1) is a very good variable to deal with the loop equations, and maybexthat
could be defined out of the orthogonal polynomial’'s frame. All this is reminiscent of the
diagrammatic method of [8] to derive the two-point correlation function.

We have not considered here the smootkgmbint connected correlation functions with
k > 2, in the long-distance regime, for which [7, 8,12] claim some universality properties.
The reason is that the orthogonal polynomials method fails in this case. Indeédpdie
connected correlation function is a productiokernels, and thus is of ordey %, while
it is well known from quantum gravity that the smoothed part is of omlér# (it can be
understood topologically [7, 12]: the exponent/fis the Euler characteristic @fdisks for
the leading disconnected term, and of a sphere Wwitioles for the connected part). In the
one-matrix case [7], the smooth&eboint correlation functions (witkh > 2) are derived by
the loop equations or equivalently by diagrammatic methods [8].

We have considered here only the Hermitian matrix case, although orthogonal
polynomial methods are also available in the orthogonal and symplectic cases, with some
refinements such as the introduction of pfaffians. It is thus likely that some of the
results presented here can have consequences for the non-Hermitian models (the WKB
approximations and the generalized Darboux—Christoffel theorem). The problem is that
the Itzykson—Zuber formula cannot be generalized, and the whole model of the chain of
matrices requires a completely different approach.
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Another generalization one might think about would be a closed chain with, for instance,
periodic boundary conditionsM,, = Mo), but for the same reason (the Itzykson—Zuber
formula), the orthogonal polynomial method does not hold.

The main prospect should now be to study the correlations of velocities and curvatures.
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Appendix A. Correction functions of any set of eigenvalues

The general correlation function of any set of eigenvalues has been computed in [15] (see
also [13] for the one-matrix case).
In addition to the kernelX;; and E;;, we will need to introduce théf;;’s:
1 oL oL
HijZKij_ﬁEji if J < Hl‘jZK,‘j if J > 1.
To compute a partial density of eigenvalues, for instance
Pno,..., n,,()"o::ln'~")"O;n07'~-3)"p;17 ~'~7)Lp;n,,)

you have to consider all the possible permutations of allithe ng + - - - + n,, variables,
and then (with obvious notations)

PA1, ooy hn) = q?tHi,j = Z(—l)a l_[ Hi o) (Ais Ao (i))-
: ~ ;

The connected correlations are obtained by reducing the sum to the cyclic permutations
only.
For instance, we have (we assuing j < k)

pi(hi) = K;i(Ai, Ai)
. 1
pi(,Lj)()‘i’ Aj) = —K; j(hi, A K i (A, M) + NKi,j()\i» AE; j(Ais Aj)
1
P,-(,C},k = K;jKji Ky + Kix KijKji — N(KinjkEik + K;iKitEjx + Kit Kij Eij)

1
+mKikEijEjk-

Appendix B. Explicit expressions of orthogonal polynomials
The orthogonal polynomial®, and P, have explicit expressions as matrix integrals:

P
,Pn()x) = f dMOnxn o denxn de"()" - MO) l_[ exp[_Ntr Vl(Ml)]
i=0
p—1
x | | expl=Nctr(M; — M 11)?]
i=0

P
P = [ AMops.. AM, ., Gt — M) [T expl-N ;1)
i=0

p—1

x [ [ expl=Netr(M; — M;11)?].
i=0
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Appendix C. An explicit example: the Gaussian potential,V (\) = %g)\z

C.1. Discrete case

Let us consider a constant Gaussian poten¥gd(i) = gA. We will use the parametrization
g = 4c(coshy — 1) for later convenience.
The operators.; contain only two terms, which we write as

5 A/ﬁ+ﬂ /a1l
i = 0iXy = iV R
N N x

The equation of motions are linear and thus easily solved:

i1+ 1 — 20 = oo Bisi+ Bi1— 28 = S,
2c 2c

with the boundary conditions:

=P, =« a1=(1+2§6)(x ﬂp_1=(1+2§6)a
8 1

(1+ 2(,‘) Olp — Olp_]_ = ﬂ
The first line implies thap; = «,,—;. The solution is then
2 — 1 )
4csinh(p + 1) tanh3 x

cosh(i + %
o = a# where o
coshs x

The momentum?; = (1/N)d/dA; is

o 1-A; . 1 /a1l A 1+ A, 1 n
T i~ i ~
’ Z TV NE Z T VN

1

where we have introduced; = sinh(p — 2i)x/sinh(p + 1)x and

a; = 2~/Oliap—i
which will play a very important role as the natural scale Xar In fact, 2; is the width of
the distribution of eigenvalues of théh matrix. Indeed, in the larg®/ limit andn ~ N,
we can eliminater and write P; as a function of};:

2( M A2
Pi()»i)=—a— Aia__ - —1).

i i a;

Its imaginary part is the density of eigenvalues of ttre matrix,

2 22
pi(hi) = — [1——=
Ta; a;

which is a semi-circle law of diameten2
The wavefunctions can be exactly computed in terms of Hermite polynoHials):

n/2 2
Qp—i 1 Ai A
i) =ci| 2= ) ——=H,(2V/N=)exp| — N1 —A)—=

Vi) C( i) Vn! n< di) p[ ( )al_z]
n/2 2

. o 1 A A
in(h) =& —2 —H, 2\/N—")ex [—N 1+ A; —-’}

Yjin (X)) J(ap_j> o ( % p ( J)ajz
(where¢; and ¢; are some constants, irrelevant for what we need; we just know that

C,‘gi = (l/a,‘)«/ZN/T[).
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We can write some WKB approximations in the laryelimit:

N i/2—=(p/% 2(2m) "4
Viin (i) ~ (Nc) Ja; Slnqb,(

xcos| (n-+ 3 ) 0~ g sina — | exp| W, *2}

() ~ ( )(p/4) (/2 2(271) 1/4 o (2n—2N+1)/4
Fyin N fsm%

A2
xcos[( >¢, —sin2p; — }exp[ Aj—’z}
4

wherel; = a; CoSg;.
Now let us compute the kernels. The propagaigris

E, G i) (71 )(j—i—l)/2 sinhy
BT AN sinh(j —i)x

SinhX 2

———F |cosn(j — Af A — 22X\

S loost — G2+ 3% - 2k .

This is an exact result since the saddle-pomt method is exact in the Gaussian case. We
also have the determinant of the second derivatives of the potdnfi@l;, ;) which is a
constant:

)(Zn—2N+l)/4

l

Op—j

xexp{—N

~_ sinh(j —i)x
Y7 sinhy
The kernelK;;(%;, 1;) obeys a generalization of the Darboux—Christoffel theorem:

1 aj d
sl

- Wth]N 1_‘/ wz 1%

PSS 1 Y 9
{Zfa—,»‘za‘f(f“)(“ M Wa)}"‘f

a, _
1//1 NI/f] N-1 wz 11/0 Y

wheret denotes the ratio = ,/a,_;a;/o;0,— ;. Let us emphasize that these equations are
exact, even forN finite (note that when = j we haver = 1 and we recover the usual
Darboux—Christofel theorem). With the operatorial notation they are obvious, being just a
rewriting of

LX) = LMK = (LR — 24 (D)) T Al/fz NN

L@@ =2 MIKi; = {A &) — A} T Al/fz NN

(if you want to rederive them, be careful since here the partial derivative with respict to
carries on the bra and is ).
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In the largeN limit, we have

(=2 1
Kij ~ <l) : . il exp[N (A; cos ¢; — Aj Co§¢>j)]
Nc a; sing;a; sing; 4w N

1 1 . 1
X{<1+ —> SinZ (¢ — ¢;)SINN(5; — &) + (1— —>
T 2 T

1 1+ 72 -1
X COSE(fﬁi — ¢;) COSN (¢; — C_,‘)HT — co(¢p; — ¢j)}

+(same thing withp; — —¢;)

where we have noted(¢) = ¢ — %sin 2.
Fori = j we haver = 1 and we recover

1 1 <sinN(§(/\) — ;“(,u))) [N Ai o 2}
; = exp| - — &% —u)
aJsing sing TN\ sin(@ —#)/2) 2 a?
which gives fori = u the density of eigenvalues (1) = (1/7a;) Sing.
Wheni # j, we note that the denominator never vanishes. It is maximum when
¢ = ¢j, i.e. X;/a; = Xj/aj; this is the regime in which one could have a not too small
correlation.

Kii(A, ) ~

C.2. Continuous limit

The continuous limit can be obtained by setting= 1/2¢, t = ie, T = pe, g = €v?, and
taking the limite — 0.
We find

9 1

" ysinhvT

1
AMx, D) =« (x coshvt + — coshv(T — t))
X

which we write as
A(¢, 1) = a(t) cosp

wherea(t) is given by

a(t) = 2+/coshvr coshv(T —1).

In the small-distance regiméX small andSs small), we have (up to some normalization
factors which will cancel when we compute the correlation function)

1 8¢ sin(Nmpasingde)+(2/a®)st cOXNmpa Singsep)
27N asing 2(8t2/a*)+35¢2

s .o 8% 4
a San(b(S—t—i-;Cqub(St)]

K, t|Ih 4+ 8A,t 4 6t)~

1 1 N
—E(\, tIA + 8, t + 8t) ~ ——ex [—— (
N V2m N6t P72
Thus we have the two-point connected correlation function
POt + A, t +81) = —K (A, t|A + A, t + 8t)

1
x(K(A + A, t 4+ 8t|A, 1) — NE(A, tHA+S6A, 1+ 5[))
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which gives
©_ 1 8¢? sit(Nmpa singsg) — (4/a*)8t? co2(Nmpa singsep)
P T T aneneazsit g 2(612/a% + L5922
N 1 8t 8¢ sin(Nmpasingdep) + (2/a®)8t coOINmpa Singdep)
(2n N581)3/2 a sing 2(8t2/a*) + 38¢2
N L, 8¢% 4
x exp[—E <a2 sir? ‘75? + cos ¢8t>j| ) (C.1)

Appendix D. The loop equations

The loop equations are nothing but the consequences of reparametrization invariance in the
partition function. For instance, for the one-matrix model [20, 21]

Z = / dM exp[—N tr V(M)].

The loop equation is a quadratic equation for the resolugny = (1/N)tr(1/(z — M)),
w(2)(V'(2) —0(2)) = P(z)

where P(z) is a polynomial inz, whose coefficients (except the leading one) are
undetermined by the loop equations:

1/ V'(z) — V(M)

P(z) = N<tr

The coefficients ofP have to be determined by some physical input, such as some
assumption about the analyticity structure ®of The most usual input is the one-cut
assumption: the requirement thathas only one cut in the complex plane, i.e. that the
support of the density of eigenvalues is connected, which is expected to be the case for a
single-well potential.

The case of the chain of matrices is very similar: the resolvent fulfils an algebraic
equation, with an undetermined polynomial on the right-hand side. Here, we will just give
the final result, and the recipe to write down the algebraic equatiomw fgy but without
any proof.

Consider the chain of matrices

7= f dMp. .. dM, exp|: — Ntrz U;(M;) — ZCZM,-MH_l]

— > = Polw(2)V'(2).

(note that the potential&;(M;) = V;(M;) + 2ch.2 have here been shifted by a quadratic
term). We will consider the resolvent of the first matni%t

)—itr !
w(z) = N< Z—Mo>.

The loop equations are obtained by performing the changes of variables

Mi—>M,'+6

1 n n
r p-1 nit1
T MM M

1 In fact, one can easily obtain a closed algebraic equation in the Mrtymit only for the resolvent of the first
(i = 0) and last{ = p) matrices.
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and by multiple recurrences on theg's. The proof is quite tedious but not difficult. We
will first need some notation. We define the function

1
720(2) =z 721(z) = 2—(U6(z) —w(2))
C
and
zi11(2) = 2—1CU,»’(Z,- (@) = zi-1(2) forO<i <p. (D.1)

Each functionz; (z) is a polynomial inz andw(z).
The algebraic equation satisfied by the resolve() is then

1, 1 1
(Z—CUO(zo(z)) - m(z)) (Z—CU,,(zp(z)) - zp_l(z)) = 5. Pz0(@). ... 2p(2)) (D.2)
where the right-hand sidB(¢o, . . ., ¢,) is a polynomial ofp + 1 variables (now considered

as independent),

1
Po..... &) = S (tr Fpi)

and theF,’s are defined as follows:
_ 1 Uglo) — Up(Mo) _ 1 Uy — Uy(My)
T2 - M T2 - M,
Note that (D.2) looks symmetric under the exchange of the two extremities of the chain
i—p—i.

As in the one-matrix case, most of the coefficients of the polynomialre unknown;
they have to be fixed by some analytical considerations ab@)t for instance impose that
(z) has only one cut. This one-cut assumption should allow one, in principle, to determine
all the unknown coefficients of.

We have made exactly the same assumption when we have replaced the opénator
a numberx in the largeN limit (cf section 1.3), and we observe that the functidnéx)
give a parametrization of equation (D.1). In factzit= Ao(x) then eachy;(z) is nothing
but 4, (x), and the loop equation (D.2) is nothing but the product of (1.16) and (1.17).

Fo=1 Fi F, — F,_1.
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